Abstract

AbstractPseudoelastic fiber-reinforced metal matrix composite with enhanced ductility and energy absorption capacity was developed. This composite system relies on the distributed nature of large pseudoelastic strains to mitigate localization of inelastic deformation and failure, and thus mobilizes a major fraction of volume for effective energy absorption. The pseudoelastic fibers were made of Ni-Ti-Cr alloy used in conjunction with two different matrices, aluminum and copper. Tension and pull-out tests were performed to evaluate the ductility and energy absorption capacity of control and pseudoelastic fiber-reinforced composites. Experimental results confirmed the ability of pseudoelastic fibers to induce distributed inelastic deformation within metal matrix composites for realizing major gains in ductility and energy absorption capacity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.