Abstract

We introduce and begin the study of new knot energies defined on knot diagrams. Physically, they model the internal energy of thin metallic solid tori squeezed between two parallel planes. Thus the knots considered can perform the second and third Reidemeister moves, but not the first one. The energy functionals considered are the sum of two terms, the uniformization term (which tends to make the curvature of the knot uniform) and the resistance term (which, in particular, forbids crossing changes). We define an infinite family of uniformization functionals, depending on an arbitrary smooth function $f$ and study the simplest nontrivial case $f(x)=x^2$, obtaining neat normal forms (corresponding to minima of the functional) by making use of the Gauss representation of immersed curves, of the phase space of the pendulum, and of elliptic functions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.