Abstract
In the liquid-drop model, the total energy of a system is expanded as a sum of volume, surface, and curvature terms. We derive an expression for the curvature energy of a metal in terms of the electron-density profile for a planar surface, and show that the resulting values agree with the fits of calculated or measured total energies to the liquid-drop expansion. In particular, this expansion accurately describes the formation energies of microscopic voids (including monovacancies) in metals. In our calculations, the curvature energy is determined by the bulk density. It is nearly the same for restricted trial density profiles as for self-consistent Kohn-Sham profiles, for the fourth-order gradient expansion as for the exact kinetic energy, and for jellium as for stabilized jellium. We also report Kohn-Sham results for the surface energy and work function. The stabilized-jellium model, while retaining the simplicity and nonempirical character of jellium, gives a significantly more realistic description of the simple metals, especially those with high bulk densities.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.