Abstract

The energies and lifetimes of magnons in several Mn-based Heusler alloys are studied using linear response density functional theory. The number of the spin wave branches in Co(2)MnSi corresponds to the number of its magnetic sublattices in contrast with the NiMnSb case in which the induced Ni sublattice cannot support optical magnons. The half-metallicity of these systems results in long-living acoustic spin waves. The example of non-half-metallic Cu(2)MnAl shows that the hybridization with Stoner continuum leads not only to the damping of magnons but also to a renormalization of their energies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call