Abstract

The proposed correlations between the energetics of gamma-ray bursts (GRBs) and their spectral properties, namely the peak energy of their prompt emission, can broadly account for the observed fluence distribution of all ‘bright’ BATSE GRBs, under the hypothesis that the GRB rate is proportional to the star formation rate and that the observed distribution in peak energy is independent of redshift. The correlations can also be broadly consistent with the properties of the whole BATSE long GRB population for a peak energy distribution smoothly extending towards lower energies, and in agreement with the properties of a sample at ‘intermediate’ fluences and with the luminosity functions inferred from the GRB number counts. We discuss the constraints that this analysis imposes on the shape of such peak energy distribution, the opening angle distribution and the tightness of the proposed correlations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call