Abstract

The West Nile virus (WNV) RNA genome harbors the characteristic methylated cap structure present at the 5′ end of eukaryotic mRNAs. In the present study, we report a detailed study of the binding energetics and thermodynamic parameters involved in the interaction between RNA and the WNV RNA triphosphatase, an enzyme involved in the synthesis of the RNA cap structure. Fluorescence spectroscopy assays revealed that the initial interaction between RNA and the enzyme is characterized by a high enthalpy of association and that the minimal RNA binding site of NS3 is 13 nucleotides. In order to provide insight into the relationship between the enzyme structure and RNA binding, we also correlated the effect of RNA binding on protein structure using both circular dichroism and denaturation studies as structural indicators. Our data indicate that the protein undergoes structural modifications upon RNA binding, although the interaction does not significantly modify the stability of the protein.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.