Abstract

Abstract During direct slip transmission of a dislocation through a twin or grain boundary, typically a residual dislocation remains in the boundary plane. Through atomistic simulations, we show systematic cases of slip transmission through various types of 〈1 1 0〉 tilts and 〈1 1 1〉 twists grain boundaries (GBs). Additionally, one specific type of GB, the coherent twin boundary (CTB), is viewed to investigate the effects of orientation and dislocation type on the slip transmission process. In every case, we measure the residual Burgers vector within the boundary and energy barrier for slip to transmit through the CTB or GB. There exists a direct correlation between the magnitude of the residual Burgers vector and the energy barrier for slip transmission. Hence, in cases of easy slip transmission (i.e. low energy barrier), a small residual dislocation is left in the GB; meanwhile in cases where it is difficult for slip to transmit past the CTB or GB (i.e. high energy barrier), a large residual Burgers vector remains within the boundary.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.