Abstract

Abstract A local fluctuation–dissipation theorem for the power delivered by a stochastic forcing is derived for Ornstein–Uhlenbeck processes driven by smooth, i. e. almost everywhere (a. e.)-differentiable stochastic perturbations (Poisson–Kac processes). An analytic expression for the probability density function of the fluctuational power is obtained in the large time limit. As these processes converge, in the Kac limit, toward classical Langevin equations driven by Wiener processes, a coarse-grained analysis of the statistical properties of the fluctuational work is developed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call