Abstract
We investigate metabolic interactions between astrocytes and GABAergic neurons at steady states corresponding to different activity levels using a six-compartment model and a new methodology based on Bayesian statistics. Many questions about the energetics of inhibition are still waiting for definite answers, including the role of glutamine and lactate effluxed by astrocytes as precursors for γ-aminobutyric acid (GABA), and whether metabolic coupling applies to the inhibitory neurotransmitter GABA. Our identification and quantification of metabolic pathways describing the interaction between GABAergic neurons and astrocytes in connection with the release of GABA makes a contribution to this important problem. Lactate released by astrocytes and its neuronal uptake is found to be coupled with neuronal activity, unlike glucose consumption, suggesting that in astrocytes, the metabolism of GABA does not require increased glycolytic activity. Negligible glutamine trafficking between the two cell types at steady state questions glutamine as a precursor of GABA, not excluding glutamine cycling as a transient dynamic phenomenon, or a prominent role of GABA reuptake. Redox balance is proposed as an explanation for elevated oxidative phosphorylation and adenosine triphosphate hydrolysis in astrocytes, decoupled from energy requirements.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.