Abstract

The luminosity densities of high-energy cosmic radiations are studied to find connections among the various components, including high-energy neutrinos measured with IceCube and gamma rays with the Fermi satellite. Matching the cosmic-ray energy generation rate density in a GeV-TeV range estimated for Milky Way with the ultrahigh-energy component requires a power-law index of the spectrum, $s_{\rm cr}\approx2.1-2.2$, somewhat harder than $s_{\rm cr}\approx2.3-2.4$ for the local index derived from the AMS-02 experiment. The soft GeV-TeV cosmic-ray spectrum extrapolated to higher energies can be compatible with PeV cosmic rays inferred from neutrino measurements, but overshoots the CR luminosity density to explain GeV-TeV gamma rays. The extrapolation from ultrahigh energies with a hard spectrum, on the other hand, can be consistent with both neutrinos and gamma-rays. These point towards either reacceleration of galactic cosmic rays or the presence of extragalactic sources with a hard spectrum. We discuss possible cosmic-ray sources that can be added.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.