Abstract

Published relationships were used to build a mathematical model that predicts the daily net energy balance of free-ranging domestic sheep (Ovis aries L.) grazing in the U.K. hills. Net energy balance was predicted for a plausible range of environmental conditions. The behaviour of the model suggested the following predictions. Locomotion will be a relatively unimportant energetic cost. Ambient temperature and rainfall alone will rarely affect energy expenditure, whereas wind will greatly increase energetic costs in winter. These are further increased, but to a relatively small extent, by any concurrent rainfall. Predictions of foraging behaviour based on maximisation of energy intake alone are likely to significantly overestimate dry matter intake from climatically exposed vegetation in winter. Where shelter is available, such models will also overestimate total intake in winter by not taking account of sheltering behaviour. This effect will be most pronounced when forage is of low digestibility or availability, wind speeds are high, or the level of coat insulation is low. Foraging models based instead on maximisation of net energy balance are likely to greatly improve predictions of the impact of large herbivores on vegetation and the mechanisms driving their population dynamics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.