Abstract

Hybrid materials, such as metal organic nanotubes (MON), are of interest because of their chemical tunability and permanent porosity. While an increasing number of compounds is being reported, very little is known about their thermodynamic stability. Herein, the energetics of a MON, (C4H12N2)0.5[(UO2)(Hida)(H2ida)]·2H2O (UMON, C10H21N3UO12) (ida = iminodiacetate), that possesses unique water exchange and uptake has been investigated by acid solution calorimetry, thermal analysis, and water adsorption calorimetry. The enthalpy of formation of UMON, C10H21N3UO12 (ΔHf,rxn), from the dense components (uranium oxide (UO3), piperazine (C4H10N2), and iminodiacetic acid (C4H7NO4) was −55.3 ± 0.9 kJ/mol, which was similar to values for other metal organic framework materials. The dehydration enthalpy to form an anhydrous UMON and gaseous H2O at 37 °C from thermogravimetric analysis (TGA)/differential scanning calorimetry (DSC) experiments was 57.8 ± 1.9 kJ/mol of water. This value is somewhat higher than the vaporization enthalpy of water (44 kJ/mol) and suggests modest bonding interactions of H2O with the inner walls of the nanotubes. Water adsorption calorimetry of (C4H12N2)0.5[(UO2)(Hida)(H2ida)]·2H2O indicated that the water molecules are confined inside the UMON material in two thermally distinct positions. The ice-like arrangement of the confined water molecules inside the nanotube impacts the energetics of the material and adds to the stabilization of the structure.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.