Abstract

The electron-transfer reactions involving the quinones in the bacterial photosynthetic reaction center (bRC) are coupled to a proton uptake by the bRC. In this study, we calculated the energies of the different states of the bRC occurring during these electron-transfer and protonation reactions by an electrostatic model. We considered the possibility that titratable groups of the bRC can change their protonation during these reactions. The protonation probabilities of titratable groups were obtained by a Monte Carlo calculation. In contrast to earlier studies by other groups, we used atomic partial charges derived from quantum-chemical calculations. Our calculated reaction energies are in agreement with experiments. We found that the proton uptake by the bRC is coupled more strongly to changes of the redox state of the quinones than to changes of their protonation state. Thus, the proton uptake by the bRC occurs predominantly before the protonation of QB. According to our computations, the reduction of QB* - to the doubly negative state QB2- is energetically even more unfavorable in the bRC than in solution. Therefore, we suggest that the second electron transfer from QA to QB occurs after QB has received its first proton. We found that the QA. -QB. - state is more populated at pH 7.5 than the QA. -QB.H state. The low population of the QA. -QB.H state may be the reason why the singly protonated QB could not be detected spectroscopically. Our calculations imply that the first protonation of QB. - is a prerequisite for the second electron transfer between QA and QB. Therefore, a pH dependence of the equilibrium between the states QA. -QB. - and QA. -QB. H can also explain the experimentally observed pH dependence of the rate for the second electron-transfer step. On the basis of our calculated reaction energies, we propose the following sequence for the electron-transfer and protonation reactions: (1) first electron transfer from QA to QB, (2) first protonation of QB (at the distal oxygen close to Ser L223), (3) second electron transfer from QA to QB, and (4) second protonation of QB (at the proximal oxygen close to His L190).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.