Abstract

We report the energetics of association in polymeric gels with two types of junction points: crystalline hydrophobic junctions and polymer-nanoparticle junctions. Time-temperature superposition (TTS) of small-amplitude oscillatory rheological measurements was used to probe crystalline poly(L-lactide) (PLLA)-based gels with and without added laponite nanoparticles. For associative polymer gels, the activation energy derived from the TTS shift factors is generally accepted as the associative strength or energy needed to break a junction point. Our systems were found to obey TTS over a wide temperature range of 15-70 °C. For systems with no added nanoparticles, two distinct behaviors were seen, with a transition occurring at a temperature close to the glass transition temperature of PLLA, T(g). Above T(g), the activation energy was similar to the PLLA crystallization enthalpy, suggesting that the activation energy is related to the energy needed to pull a PLLA chain out of the crystalline domain. Below T(g), the activation energy is expected to be the energy required to increase mobility of the polymer chains and soften the glassy regions of the PLLA core. Similar behavior was seen in the nanocomposite gels with added laponite; however, the added clay appears to reduce the average value of the activation enthalpy. This confirms our SAXS results and suggests that laponite particles are participating in the network structure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.