Abstract

A recently developed method for time-resolved thermodynamic measurements was used to study the photochemical reaction(s) of the BLUF domain of AppA (AppA-BLUF), which has a dimeric form in the ground state, in terms of the energetics and heat capacity changes (DeltaC(p)) in different time domains. The enthalpy change (DeltaH) of the first intermediate that forms within 1 ns after photoexcitation was 38 (+/-8) kJ mol(-1) at 298 K. The heat capacity change (DeltaC(p)) upon formation of this intermediate was positive [1.4 (+/-0.3) kJ mol(-1) K(-1)]. This positive DeltaC(p) suggests that the hydrophobic surface area of AppA-BLUF exposed to the bulk solvent increased. After this initial transition, a dimerization reaction with another ground-state dimer (i.e., tetramer formation) takes place. Upon this reaction, the energy was stabilized to 26 (+/-6) kJ mol(-1) at 298 K. Interestingly, the dimer formation was accompanied by a larger but negative DeltaC(p) [-6.0 (+/-1) kJ mol(-1) K(-1)]. This negative DeltaC(p) might indicate buried hydrophobic residues at the interface of the dimer and/or the existence of trapped water at the interface. We suggest that hydrophobic interactions are the main driving force for the formation of the dimer upon photoactivation of AppA-BLUF.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.