Abstract

We use on-the-fly finite temperature string method in collective variables to study the transition from a normal to an amyloidogenic conformation of β2-microglobulin. We show that the protonation state of two histidine residues is of key importance and that under acidic (protonating) conditions, the transition to the amyloidgenic form is facilitated by both displacement of N-terminal residues to disrupt a hydrophobic pocket and by side-chain/side-chain electrostatic attraction, both of which facilitate a cis-trans prolyl isomerization. The free energy barriers for the normal-to-amyloidogenic isomerization are found to be 14.9 and 7.1 kcal/mol for the neutral and protonated cases, respectively, consistent with enhanced amyloidgenesis at low pH observed both in vitro and in hemodialysis-associated amyloidosis, and somewhat lower than experimentally determined barriers for bare prolyl cis-trans isomerization. We suggest specific mutagenesis experiments which could be used to further validate the mechanism observed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.