Abstract

We present a model describing the evolution of Fanaroff-Riley type I and II radio AGN, and the transition between these classes. We quantify galaxy environments using a semi-analytic galaxy formation model, and apply our model to a volume-limited low redshift ($0.03 \leqslant z \leqslant 0.1$) sample of observed AGN to determine the distribution of jet powers and active lifetimes at the present epoch. Radio sources in massive galaxies are found to remain active for longer, spend less time in the quiescent phase, and inject more energy into their hosts than their less massive counterparts. The jet power is independent of the host stellar mass within uncertainties, consistent with maintenance-mode AGN feedback paradigm. The environments of these AGN are in or close to long-term heating-cooling balance. We also examine the properties of high- and low-excitation radio galaxy sub-populations. The HERGs are younger than LERGs by an order of magnitude, whilst their jet powers are greater by a factor of four. The Eddington-scaled accretion rates and jet production efficiencies of these populations are consistent with LERGs being powered by radiatively inefficient advection dominated accretion flows (ADAFs), while HERGs are fed by a radiatively efficient accretion mechanism.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.