Abstract

Thermal models of ultraviolet MALDI ionization based on the polar fluid concept are re-examined. Key components are very high solvating power of the fluidized matrix and consequent low reaction-free energy, attainment of thermal equilibrium in the fluid, and negligible recombination losses. None of these are found to hold in a MALDI event. The reaction-free energy in the hot matrix must be near the gas phase value, ion formation is too slow to approach equilibrium, and geminate recombination of autoprotolysis pairs greatly increases the initial loss rate. The maximum thermal ion yield is estimated to be many orders of magnitude below experimental values.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.