Abstract

We perform a systematic first-principles study of energetics and electronic properties of chiral carbon nanotubes (CNTs) in the density-functional theory. It is found that chiral CNTs possess slightly twisted ground-state geometries. Moderate-diameter CNTs show twisting-dependent electronic properties well classified by their chiral indices, while the electronic structures of small-diameter CNTs possess sizable but individually different twisting dependences, leading to metal-semiconductor transitions in some CNTs. The CNT having the widest fundamental gap is predicted to be the twisted (4,3) CNT.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call