Abstract

A globally high-order numerical discretization of time-dependent conservation laws on deforming domains, and the corresponding fully discrete adjoint method, is reviewed and applied to determine energetically optimal flapping wing motions subject to aerodynamic constraints using a reduced space PDE-constrained optimization framework. The conservation law on a deforming domain is transformed to one on a fixed domain and discretized in space using a high-order discontinuous Galerkin method. An efficient, high-order temporal discretization is achieved using diagonally implicit Runge-Kutta schemes. Quantities of interest, such as the total energy required to complete a flapping cycle and the integrated forces produced on the wing, are discretized in a solver-consistent way, that is, via the same spatiotemporal discretization used for the conservation law. The fully discrete adjoint method is used to compute discretely consistent gradients of the quantities of interest and passed to a black-box, gradient-based nonlinear optimization solver. This framework successfully determines an energetically optimal flapping trajectory such that the net thrust of the wing is zero to within 9 digits after only 12 optimization iterations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.