Abstract

In this paper, we propose Energetically Consistent Inelasticity (ECI), a new formulation for modeling and discretizing finite strain elastoplasticity/viscoelasticity in a way that is compatible with optimization-based time integrators. We provide an in-depth analysis for allowing plasticity to be implicitly integrated through an augmented strain energy density function. We develop ECI on the associative von-Mises J2 plasticity, the non-associative Drucker-Prager plasticity, and the finite strain viscoelasticity. We demonstrate the resulting scheme on both the Finite Element Method (FEM) and the Material Point Method (MPM). Combined with a custom Newton-type optimization integration scheme, our method enables simulating stiff and large-deformation inelastic dynamics of metal, sand, snow, and foam with larger time steps, improved stability, higher efficiency, and better accuracy than existing approaches.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.