Abstract
The specific work presents an optical and thermal investigation of a hybrid thermo-photovoltaic solar collector with an asymmetrical compound parabolic mirror. Such collectors offer an innovative and sustainable approach to address both the thermal and electrical demands of residents on islands using renewable sources of energy and thus reducing the dependency on fossil fuels. The main goal of this investigation involves an analysis of the prementioned type of solar collector, incorporating an innovative and cost-effective numerical modelling technique aiming to enhance comprehension of its energy and exergy performance. The optical performance of the collector was calculated first with ray tracing for the month of June, and the ideal slope was determined for the same month. After the optical analysis, the energy and exergy performance were both estimated by implementing a novel numerical method in both COMSOL and SolidWorks. Based on the optical analysis, it was determined that the most favorable inclination angle for achieving optimum optical efficiency on the mean day of June is 10°. The thermal analysis, focusing on thermal efficiency, showed a maximum deviation of 5.3% between the two solutions, which indicates the reliability of the method. The collector achieved a maximum thermal efficiency of 58.55% and a maximum exergy efficiency of 16.94%.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.