Abstract

The residence of municipal solid waste within a landfill body results in a significant change of material properties. Experiences with the energetic utilisation of the burnable fractions from formerly landfilled waste are hardly documented, the influence of refuse derived fuels (RDF) from such materials on the performance of modern waste-to-energy plants is not sufficiently described in scientific literature. Therefore this study focuses on the energetic utilisation of refuse derived fuel from landfilled waste, processed in a mechanical waste treatment facility, and the impact of the material on the operation of the incineration plant. Additionally, the possibility of direct combustion of non-pre-treated excavated landfill material has been evaluated in the same facility. First, sampling and analysis of the fuel has been carried out. Based on this, a large-scale combustion experiment was planned and conducted in an industrial waste-to-energy plant. Steam mass flow rate, concentration of harmful substances in the raw gas, as well as total emissions of the facility have been monitored in detail. Furthermore, the influence of the landfilled material on the additive consumption has been determined. The combustion residues (bottom ash) were also sampled and analysed. Based on the evaluation of operating data and analysis of both fuel and residue, suitable thermal treatment approaches for the refuse-derived fuel and the non-pre-treated excavated material have been assessed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.