Abstract

Experimental thermodynamic properties of halogenosubstituted benzoic acids have been evaluated with the help of complementary in silico methods. The study encompassed benzoic acids with fluoro, chloro-, bromo-, and iodo-substituents in the 2-, 3-, and 4-position in the benzene ring, as well as a series of methyl-substituted bromobenzoic acids and dibromobenzoic acids. The high-level quantum-chemical composite method G4 was additionally used for mutual validation of the theoretical and experimental gaseous standard molar enthalpies of formation. A simple group contribution procedure has been developed for a quick appraisal of the gas-phase and liquid-phase enthalpies of formation as well as of vaporization enthalpies of halogenosubstituted benzoic acids and their poly-methyl or poly-halogen-substituted derivatives. The system of group-additivity parameters developed in this work can help in the evaluation of new experimental results or for validation of already available data compiled in comprehensive databases. Moreover, the reliable additive estimates are essential for material sciences or for assessment of chemicals fate in environment and in atmosphere.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.