Abstract
Results from the Swarthmore Spheromak Experiment (SSX) [M. R. Brown, Phys. Plasmas 6, 1717 (1999)] indicate that formation and partial merging of two spheromak plasmas can be described well by a magnetohydrodynamic (MHD) picture in which there is substantial evolution towards force free states within each vessel, while reconnection activity, also described reasonably well by MHD, occurs in the region of interaction. MHD simulations [V. S. Lukin et al., Phys. Plasmas 8, 1600 (2001)] support and provide further detail to this interpretation. In the present study, test particle equations are integrated using MHD data from SSX simulations to further understand the energetic particle fluxes that are observed experimentally. The test particle simulation is run with dimensionless parameters similar to the experiment, and particles are permitted to escape when they encounter the simulated SSX boundaries. MHD activity related to reconnection is responsible for accelerating charged particles. The process includes two phases—a strong but short duration direct acceleration in the quasi-steady reconnection electric field, and a weaker longer lived stochastic component associated with turbulence.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.