Abstract

An interpretation of the stable trapping boundaries of energetic electrons and protons during quiet periods is given basing on a realistic magnetospheric magnetic field model. Particle losses are explained in terms of an ionospheric and drift loss cone filling due to a non-adiabatic pitch-angle scattering in the nightside magnetotail current sheet. The proposed mechanism is shown to provide a good agreement of the observed and calculated positions of the energetic particle trapping boundaries, as well as their energy dependence. The obtained results can be applied as a tool for investigating the magnetospheric magnetic field structure using the particle data of low-altitude satellites.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.