Abstract

The energy distributions of protons emitted from the Coulomb explosion of hydrogen clusters by an intense femtosecond laser have been experimentally obtained. Ten thousand hydrogen clusters were exploded, emitting 8.1-keV protons under laser irradiation of intensity 6 × 1016W/cm2. The energy distributions are interpreted well by a spherical uniform cluster analytical model. The maximum energy of the emitted protons can be characterized by cluster size and laser intensity. The laser intensity scale for the maximum proton energy, given by a spherical cluster Coulomb explosion model, is in fairly good agreement with the experimental results obtained at a laser intensity of 1016–1017 W/cm2 and also when extrapolated with the results of three-dimensional particle simulations at 1020–1021 W/cm2. Energetic proton generation in low-density plastic (C5H10) foam by intense femtosecond laser pulse irradiation has been studied experimentally and numerically. Plastic foam was successfully produced by a sol-gel method, achieving an average density of 10 mg/cm3. The foam target was irradiated by 100-fs pulses of a laser with intensity 1 × 1018 W/cm2. A plateau structure extending up to 200 keV was observed in the energy distribution of protons generated from the foam target, with the plateau shape explained well by Coulomb explosion of lamella in the foam. The laser-foam interaction and ion generation were studied qualitatively by two-dimensional particle-in-cell simulations, which indicated that energetic protons are mainly generated by the Coulomb explosion. From the results, the efficiency of energetic ion generation in a low-density foam target by Coulomb explosion is expected to be higher than in a gas-cluster target.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call