Abstract

Abstract. We present simultaneous riometer observations of cosmic noise absorption in the nightside and dawn-noon sectors during sawtooth particle injections during 18 April 2002. Energetic electron precipitation (>30 keV) is a feature of magnetospheric substorms and cosmic radio noise absorption acts as a proxy for qualitatively measuring this precipitation. This event provides an opportunity to compare the absorption that accompanies periodic electron injections with the accepted paradigm of substorm-related absorption. We consider whether the absorption is consistent with the premise that these injections are quasi-periodic substorms and study the effects of sustained activity on the level of precipitation. Four consecutive electron injection events have been identified from the LANL (Los Alamos National Laboratory) geosynchronous data; the first two showing that additional activity can occur within the 2–4 h sawtooth periodicity. The first three events have accompanying absorption on the nightside that demonstrate good agreement with the expected pattern of substorm-absorption: discrete spike events with poleward motion at the onset followed by equatorward moving structures and more diffuse absorption, correlated with optical observations. Dayside absorption is linked to gradient-curvature drifting electrons observed at geostationary orbit and it is shown that low fluxes can lead to a lack of absorption as precipitation is suppressed; precipitation begins when the drifting electron flux surpasses some critical level following continuous injections of electrons from the magnetotail. In addition it is shown that the apparent motion of absorption determined from an azimuthal chain of riometers exhibits an acceleration that may be indicative of an energisation of the drifting electron population.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.