Abstract

Enceladus is the main source of neutral and charged particles in the Saturnian magnetosphere. The particles originate at more than 100 active geysers forming a plume above the south pole of the moon and are continuously released into Saturn’s magnetosphere. Therefore the understanding of the interaction of those particles and the local magnetospheric environment of the moon is very important. One technique to study that interaction is to study the typical motion of charged particles in the perturbed plasma flow and the associated magnetic field lines in the vicinity of the moon especially during close flybys. The Cassini spacecraft flew by Enceladus 23 times between 2005 and 2015 at distances between 25 and 5000 km. During some of the flybys Cassini went directly through the south polar plume. Other flybys happened north of the moon or on high-latitude trajectories with respect to the moon.In this paper we present the energetic electron measurements during those flybys obtained by the Low Energy Magnetosphere Measurement System LEMMS, part of the Magnetosphere Imaging Instrument MIMI onboard Cassini (Krimigis et al., 2004). As already shown in Krupp et al. (2012) for the first 14 flybys MIMI/LEMMS typically observes dropouts in the particle intensities in the region of disturbed field lines and in the presence of the moon itself or dense material blocking the bounce and drift motions of the particles. We present in this paper a continuation of the Krupp et al. (2012) results and add a full classification for all 23 flybys using the full data set of energetic electron measurements of MIMI/LEMMS. We distinguish the observed absorption and dust signatures into four different categories: (1) full absorption signatures when all the particles within a fluxtube connecting the spacecraft with the moon are lost onto the moon during one of the particle motions; (2) partial dropouts (ramp-like feature) when not all the particles inside the fluxtube are lost; (3) short dropouts in the fluxes when particles are suddenly lost for a short period in time; and interpret those features as full or partial losses onto the moon or its environment as a result of different plasma and dust regimes in the vicinity of Enceladus. We compare the results with those of Meier et al. (2014) and Engelhardt et al. (2015); (4) In addition we also show dust-related “false electron” measurements for those flybys when Cassini directly went through the dense regions of the south polar plume. Those “dust-peaks” can be interpreted as the result of impacting dust particles inside the LEMMS aperture or nearby creating a plasma cloud.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.