Abstract

The generation of energetic electron and proton beams was studied from the interaction of high intensity laser pulses with pre-drilled conical targets. These conical targets are laser machined onto flat targets using 7–180 µJ pulses whose axis of propagation is identical to that of the main high intensity pulse. This method significantly relaxes requirements for alignment of conical targets in systematic experimental investigations and also reduces the cost of target fabrication. These experiments showed that conical targets increase the electron beam charge by up to 44 ± 18% compared with flat targets. We also found greater electron beam divergence for conical targets than for flat targets, which was due to escaping electrons from the surface of the cone wall into the surrounding solid target region. In addition, the experiments showed similar maximum proton energies for both targets since the larger electron beam divergence balances the increase in electron beam charge for conical targets. 2D particle in cell simulations were consistent with the experimental results. Simulations for conical target without preplasma showed higher energy gain for heavy ions due to ‘directed coulomb explosion’. This may be useful for medical applications or for ion beam fast ignition fusion.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call