Abstract

Abstract In this work a concept of energetic efficiency of mixing is presented and discussed; a classical definition of mixing efficiency is modified to include effects of the Schmidt number and the Reynolds number. Generalization to turbulent flows is presented as well. It is shown how the energetic efficiency of mixing as well as efficiencies of drop breakage and mass transfer in twophase liquid-liquid systems can be identified using mathematical models and test chemical reactions. New expressions for analyzing efficiency problem are applied to identify the energetic efficiency of mixing in a stirred tank, a rotor stator mixer and a microreactor. Published experimental data and new results obtained using new systems of test reactions are applied. It has been shown that the efficiency of mixing is small in popular types of reactors and mixers and thus there is some space for improvement.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.