Abstract

The coiled coil is one of the simplest and best-studied protein structural motifs, consisting of two to five helices wound around each other. Empirical rules have been established on the tendency of different core sequences to form a certain oligomeric state but the physical forces behind this specificity are unclear. In this work, we model four sequences onto the structures of dimeric, trimeric, tetrameric, and pentameric coiled coils. We first examine the ability of an effective energy function (EEF1.1) to discriminate the correct oligomeric state for a given sequence. We find that inclusion of the translational, rotational, and side-chain conformational entropy is necessary for discriminating the native structures from their misassembled counterparts. The decomposition of the effective energy into residue contributions yields theoretical values for the oligomeric propensity of different residue types at different heptad positions. We find that certain calculated residue propensities are general and consistent with existing rules. For example, leucine at d favors dimers, leucine at a favors tetramers or pentamers, and isoleucine at a favors trimers. Other residue propensities are sequence context dependent. For example, glutamine at d favors trimers in one context and pentamers in another. Charged residues at e and g positions usually destabilize higher oligomers due to higher desolvation. Nonpolar residues at these positions confer pentamer specificity when combined with certain residues at positions a and d. Specifically, the pair Leua-Alag' or the inverse was found to stabilize the pentamer. The small energy gap between the native and misfolded counterparts explains why a few mutations at the core sites are sufficient to induce a change in the oligomeric state of these peptides. A large number of possible experiments are suggested by these results.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call