Abstract
Energy and exergy analyses were performed to evaluate the pyrolysis of the lignocellulosic biomasses, beech wood and flax shives, and the pyrolysis of biomass principal compounds (cellulose, hemicelluloses and lignin) as well. The reaction took place in a semi-continuous reactor at 500 °C within an intermediary pyrolysis regime. Lignin showed the lowest heat for pyrolysis, with 0.86 MJ/kgRaw material, followed by cellulose (1.21 MJ/kgRaw material) and hemicellulose (1.43 MJ/kgRaw material). The heat for pyrolysis for the pseudo-components was inferior to those obtained for the biomasses. Beech wood heat for pyrolysis was 1.97 MJ/kgBiomass and that for flax shives was 2.2 MJ/kgBiomass. The thermal behavior of the biomasses was similar to that of hemicellulose and cellulose, as the bio-oils seemed to have closest energetic and exergetic distribution of chemical families as compared to the lignin bio-oil. For all pyrolysis tests, bio-oil represented the stream with lowest anergy. As values were between 0.08 and 0.57 MJ/kgBio-oil. Pyrolysis of the pseudo-components showed lower exergy destruction rate than pyrolysis of the biomasses; this can be a result of the competition of thermal reactions between cellulose, hemicellulose and lignin within the biomass during pyrolysis. Meanwhile, less exergy was destroyed in flax shives pyrolysis (2.00 MJ/kgBiomass) than beech wood pyrolysis (2.1 MJ/kgBiomass).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.