Energy | VOL. 196
Read

Energetic and exergetic performance analysis of a solar driven power, desalination and cooling poly-generation system

Publication Date Apr 1, 2020

Abstract

Abstract This paper presents a thermodynamic analysis of a poly-generation system powered by solar thermal energy using parabolic trough collectors. The proposed system consists of an organic Rankine cycle, a multiple effect distillation and an absorption cooling unit. The performance analysis of the solar system is conducted for different configurations: power generation only, cogeneration power and cooling, cogeneration power and desalination, and poly-generation. The effects of turbine inlet temperature and pump inlet temperature on the energetic and exergetic system performance as well as the net power output and total exergy loss of the system are examined. In addition, exergetic parameters, including system total exergy loss, fuel depletion ratio and improvement potential were analyzed. The study reveals that increasing the turbine inlet temperature increases the performance while it reduces the total exergy destruction rate of the system. The result of the study also shows that the two main sources of exergy destruction are the solar thermal collector and desalination unit; with 49.3% of the input exergy (76% of the total exergy loss) destructed in the collector while 9.6% of the inlet exergy (14.9% of the total exergy loss) is destroyed in the desalination system. The overall improvement potential of the system was found to be 64.8%.

Concepts

Total Exergy Loss Main Sources Of Exergy Destruction Effects Of Turbine Inlet Temperature Fuel Depletion Ratio Cogeneration Power Pump Inlet Temperature Multiple Effect Distillation Parabolic Trough Collectors Net Power Output Exergetic Parameters

Round-ups are the summaries of handpicked papers around trending topics published every week. These would enable you to scan through a collection of papers and decide if the paper is relevant to you before actually investing time into reading it.

Coronavirus Research Articles published between Sep 26, 2022 to Oct 02, 2022

R DiscoveryOct 03, 2022
R DiscoveryArticles Included:  5

Introduction: Test solutions (Biotrue, renu Advanced [Bausch and Lomb], ACUVUE RevitaLens [Johnson and Johnson Vision], cleadew [Ophtecs corp.] or AOS...

Read More

Good health Research Articles published between Sep 26, 2022 to Oct 02, 2022

R DiscoveryOct 03, 2022
R DiscoveryArticles Included:  2

Patient and public involvement in health care is considered indispensable in the way we conduct daily pediatric neurology practice, and in the develop...

Read More

Quality Of Education Research Articles published between Sep 26, 2022 to Oct 02, 2022

R DiscoveryOct 03, 2022
R DiscoveryArticles Included:  5

Ingenta is not the publisher of the publication content on this website. The responsibility for the publication content rests with the publishers prov...

Read More

Gender Equality Research Articles published between Sep 26, 2022 to Oct 02, 2022

R DiscoveryOct 03, 2022
R DiscoveryArticles Included:  3

Introduction: As of early March 2022, the COVID-19 pandemic has killed more 5.9 million people worldwide, and infected more than 437 million.

Read More

Coronavirus Pandemic

You can also read COVID related content on R COVID-19

R ProductsCOVID-19

ONE PROBLEM . ONE PURPOSE . ONE PLACE

Creating the world’s largest AI-driven & human-curated collection of research, news, expert recommendations and educational resources on COVID-19

COVID-19 Dashboard

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on “as is” basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The Copyright Law.