Abstract

As a high-efficiency and eco-friendly way of energy conversion, fuel cell has received much attention in recent years. A novel residential combined cooling, heating and power (CCHP) system, consisting of a biomass gasifier, a proton exchange membrane fuel cell (PEMFC) stack, an absorption chiller and auxiliary equipment, is proposed. Based on the established thermodynamic models, the effects of operating parameters, biomass materials type and moisture content on the system performance are closely investigated. Overall system performance is then compared under four different operating modes. From the viewpoints of energy utilization and CO2 emissions, the CCHP mode has the best performance with corresponding energy efficiency of 57.41% and CO2 emission index of 0.516 ton/MWh. Exergy analysis results suggest that the optimization and transformation on the gasifier and PEMFC stack should be encouraged. Energy and exergy assessments in this research provide pragmatic guidance to the performance improvement of the integrated CCHP systems with PEMFC. This research also achieves a reasonable combination of efficient cogeneration, green hydrogen production and full recovery of low grade waste heat.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call