Abstract

A combination of spectroscopic and calorimetric techniques was used to determine complete thermodynamic profiles accompanying the folding of a model Okazaki fragment with sequence 5'-r(gagga)d(ATCTTTG)-3'/5'-d(CAAAGATTCCTC)-3' and control DNA (with and without thymidine substitutions for uridine), RNA, and hybrid duplexes. Circular dichroism spectroscopy indicated that all DNA duplexes are in the B conformation, the RNA and hybrid duplexes are in the A conformation, and the Okazaki fragment exhibits a spectrum between the A and B conformations. Ultraviolet and differential scanning calorimetry melting experiments reveal that all duplexes unfold in two-state transitions with thermal stabilities that follow the order RNA > OKA > DNA (with thymidines) > hybrids > DNA (with uridines). The dependence of the transition temperature on salt concentration yielded counterion releases in the following order: DNA (with thymidines) > RNA > DNA (with uridines) > OKA > hybrids. Thus, Okazaki fragments have a conformation and charge density between those of its components DNA and hybrid segments. However, the presence of the RNA-DNA/DNA junction confers on them higher stabilities than their component hybrid and DNA segments. The binding of intercalators to an Okazaki hairpin of sequence 5'-r(gc)d(GCU5GCGC)-3' and to its control DNA hairpin has also been studied. The results show that the binding of intercalators to Okazaki fragments is accompanied with higher heats and lower binding affinities, compared with DNA duplexes. This suggests that the presence of an RNA/DNA junction yields a larger surface contact to interact with the phenanthroline ring of the intercalators, which may lead to a larger disruption of the flexible flanking bases of the junction. The overall results suggest that the presence of this junction stabilizes Okazaki fragments and provides a structural feature that can be exploited in the design of drugs to specifically target these molecules.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.