Abstract
Although dual-energy CT was initially described by Hounsfield in 1973, it remains underused in clinical practice. It is therefore important to emphasize the clinical benefits and limitations of this technique. Iodine mapping makes it possible to quantify the uptake of iodine, which is very important in characterizing tumors, lung perfusion, pulmonary nodules, and the tumor response to new treatments. Dual-energy CT also makes it possible to obtain virtual single-energy images and virtual images without iodinated contrast or without calcium, as well as to separate materials such as uric acid or fat and to elaborate hepatic iron overload maps. In this article, we review some of the clinical benefits and technical limitations to improve understanding of dual-energy CT and expand its use in clinical practice.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.