Abstract
ABSTRACTIn this study, numerical simulations are conducted to investigate the effects of bowed outlet guide vanes (OGVs) on endwall heat transfer and aerodynamic performance. Both on- and off-design conditions are studied. For bowed vanes, the bowed angle varies from 10° to 40° and the normalized bowed height ranges from 0.1 to 0.3. Results are included for Nusselt number distributions on the endwall, the energy losses, the yaw angles, and near-wall flow structures. For the convenience of comparison, the straight vane is also studied as a baseline. It is found that the bowed vanes can effectively reduce the endwall heat transfer. Among the tested parameters, a bowed angle of 40° and a normalized bowed height of 0.3 provide the best-controlled heat transfer for both the on- and off-design conditions. However, the bowed vanes have different effects on the energy losses and the yaw angles depending on the operating conditions. For the on-design condition with the inlet angle of 30° (the incidence angle is 0°) and the off-design condition with the inlet angle of 0°, the bowed vanes do not significantly increase the energy losses and yaw angles, whereas for the off-design condition with the inlet angle of −30°, significant changes are observed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.