Abstract
Movement is often used to indicate host vigour, as it has various ecological and evolutionary implications, and has been shown to be affected by parasites. We investigate the relationship between tick load and movement in the Australian Sleepy Lizard (Tiliqua rugosa (Gray, 1825)) using high resolution GPS tracking. This allowed us to track individuals across the entire activity season. We hypothesized that tick load negatively affects host movement (mean distance moved per day). We used a multivariate statistical model informed by the ecology and biology of the host and parasite, their host–parasite relationship, and known host movement patterns. This allowed us to quantify the effects of ticks on lizard movement above and beyond effects of other factors such as time in the activity season, lizard body condition, and stress. We did not find any support for our hypothesis. Instead, our results provide evidence that lizard movement is strongly driven by internal state (sex and body condition independent of tick load) and by external factors (environmental conditions). We suggest that the Sleepy Lizard has largely adapted to natural levels of tick infection in this system. Our results conform to host–parasite arms race theory, which predicts varying impacts of parasites on hosts in natural systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.