Abstract

Background Studies analysing the effect of endurance training on heart mitochondrial function submitted to in vitro anoxia-reoxygenation (A-R) are missing. The present study aimed to investigate the effect of moderate endurance treadmill training (14 weeks) against rat heart mitochondrial dysfunction induced by in vitro A-R. Methods Respiratory parameters (state 3, state 4, ADP/O and respiratory control ratio—RCR) and oxidative damage markers (carbonyl groups and malondialdehyde) were determined in isolated mitochondria before and after 1 min anoxia followed by 4 min reoxygenation. Levels of heat shock protein 60 kDa (HSP60) and 70 kDa (HSP70) were measured before A-R in mitochondria and whole muscle homogenate, respectively. Results A-R significantly impaired the rate of state 3 and state 4 respiration, as well as the RCR and ADP/O in the sedentary group. However, mitochondrial state 3 respiration was significantly higher in trained than in the sedentary group both before and after A-R. The impairments in RCR, ADP/O ratio and state 4 induced by A-R in sedentary group were significantly attenuated in endurance-trained group. The inhibition of state 4 induced by GDP was significantly higher in trained than in sedentary group. Oxidative modifications of mitochondrial proteins and phospholipids were found in sedentary group after A-R, although limited in trained group. Increased levels of mitochondrial HSP60 and tissue HSP70 accompanied the lower decrease in the respiratory function after A-R observed in trained group. Conclusion We therefore concluded that endurance training limited the impairments on rat heart mitochondria caused by the oxidant insult inflicted by in vitro A-R.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.