Abstract

The present study was conducted to investigate the potential role of changes in the apparent K(m) for ADP and in the functional coupling of the creatine (Cr) kinase (CK) system (CK efficiency) in explaining the tighter integration of ATP supply and demand after exercise training. Mitochondrial function was assessed in saponin-skinned fibers from the soleus and the deep red portion of the medial gastrocnemius isolated from trained (T; treadmill running, 5 days/wk, 4 wk) and control (C) female Sprague-Dawley rats. In the soleus, V(max) in the presence of 1 mM ADP was increased by 21% after training (5.9 +/- 0.2 vs. 4.7 +/- 0.4 nmol O(2). min(-1). mg dry wt(-1), P < 0.05). This was accompanied by no change in the K(m) for ADP measured in the absence of Cr (146 +/- 9 vs. 149 +/- 13 microM in T and C, respectively) and in its presence (50 +/- 4 vs. 48 +/- 6 microM in T and C, respectively) and in CK efficiency [K(m) (+Cr)/K(m) (-Cr)]. In contrast, in the red gastrocnemius, training decreased, by 35%, the apparent K(m) for ADP in the absence (83 +/- 5 vs. 129 +/- 9 microM, P < 0.01) of Cr, without affecting V(max) (6.2 +/- 0.4 vs. 6.7 +/- 0.3 nmol O(2). min(-1). mg dry wt(-1) in T and C, respectively) and CK efficiency. These results thus suggest that training induces muscle-specific adaptations of mitochondrial function and that a change in the intrinsic sensitivity of mitochondria to ADP could at least partly explain the tighter integration of ATP and demand commonly observed after training.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call