Abstract
The purpose of the study was to determine the effect of daily endurance treadmill training (2 h/day, 30 m/min) on motoneuron biophysical properties. Electrophysiological properties of tibial motoneurons were measured in situ in anesthetized (ketamine/xylazine) control and trained rats using sharp glass microelectrodes. Motoneurons from trained rats had significantly hyperpolarized resting membrane potentials and spike trigger levels, and faster antidromic spike rise-times. "Fast" motoneurons (after-hyperpolarization half-decay time <20 ms) in trained rats also had a significantly larger mean cell capacitance than those in control rats, suggesting that they were larger, although this had no effect on indices of excitability (rheobase, cell input resistance). Motoneurons are thus targets for activity-induced adaptations, which may have clinical significance for the role of physical activity as a therapeutic modality in cases of neurological deficit. The specific adaptations noted, which reflect alterations in ionic conductances, may serve to offset decreases in membrane excitability that occur during sustained excitation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.