Abstract
Numerous studies of road surfaces in the areas of deformation joints of bridges and overpasses have shown that the use of polymer composite materials can significantly reduce cracks and destruction. The cyclic durability of such materials prevents rutting in the zone of deformation seams, due to their damping properties. Effective building materials based on furfural acetone monomers (FAM) are used for the manufacture of tides that experience cyclic impacts of vehicle wheels. Therefore, tests were conducted on the endurance of FAM polymer concrete under the influence of cyclic application of load. Today cyclic and static durability of traditional FAM polymer concretes has been studied in detail. However, the carcass technology can improve the characteristics of polymer concrete, in particular, reduce shrinkage. These polymer concretes are produced in two stages. First, a carcass is created from the filler grains glued together, and then the voids are filled with a matrix composition. This article presents the results of endurance tests of polymer concrete made using carcass and traditional technologies, with the same set of raw materials. To determine the limit of endurance, we used the method of planning an experiment with the construction of an orthogonal-composite plan of the second order. The cycle asymmetry coefficient and loading level (as a percentage of the destruction load) were selected as variable factors affecting the cyclic durability. Lines of fatigue strength of traditional polymer concrete FAM and obtained by carcass manufacturing technology at different values of the cycle asymmetry coefficient are also constructed. The results of endurance tests under the influence of repeated application of load showed that the polymer composite material based on furfural acetone monomer, obtained by carcass technology, has an increased cyclic durability compared to traditional polymer concrete.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.