Abstract

The increasing prevalence of waterpipe tobacco smoking (WTS) and its detrimental effects on memory function have been reported. This study was conducted to investigate the effect of moderate-intensity endurance exercise on the detrimental effects of WTS on learning and spatial memory in rats. Animals were divided into the Control group (CTL), the exercise group (Ex) which trained for 8 weeks, the WTS group (Wp) exposed to smoke inhalation (30 minutes per day, 5 days each week, and for 8 weeks), and the group that did exercise training and received waterpipe smoke together (Ex + Wp). Thereafter, learning and spatial memory were assessed by the Morris water maze test and hippocampal molecular measurements were done. Waterpipe smoke significantly impaired learning and spatial memory, decreased expression of neurotrophic factors IGF-1 and BDNF (p < .01 and p < .05 vs. CTL group, respectively), increased BAX to BCL-2 ratio (p < .001 vs. CTL group) in hippocampal tissue, and increased the percent of damaged neurons in the hippocampal CA1 area (p < .05 vs. CTL group). Combination of exercise training with WTS prevented learning and spatial memory disturbances and recovered expression of neurotrophic factors IGF-1 (p < .05 vs. Wp group), decreased BAX to BCL-2 ratio (p < .001 vs. Wp group), and reduced percentage of damaged neurons (p < .05 vs. Wp group). Findings suggest that moderate-intensity endurance exercise training can ameliorate learning and memory impairment caused by waterpipe smoke in rats. This effect partly results from increasing the expression of neurotrophic factors BDNF and IGF-1 and correcting pro/anti-apoptotic proteins balance in the hippocampal tissue. The popularity of WTS especially among youth is increasing. We assessed the effect of hookah smoke with/without exercise on learning and memory. Hookah smoke leads to CA1-neural injury and impairs learning and memory in rats. A combination of exercise training with hookah smoke attenuates these complications. This positive effect of exercise is partially mediated by the balancing of brain-derived neurotrophic factor (BDNF) and Insulin-like growth factor-1 (IGF-1) and also the BAX to BCL-2 ratio, a significant predictor of cell susceptibility to apoptosis. Extrapolation of these positive findings to humans needs complementary studies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call