Abstract
Endurance exercise training (ExT) induces metabolic, structural, and functional adaptations via lipidomic modifications, yet the systematic elucidation of lipidome alterations in response to ExT remains incomplete. As a part of the Molecular Transducers of Physical Activity Consortium (MoTrPAC), we leveraged non-targeted and targeted lipidomics for the systematic discovery of lipid alterations in the brown adipose tissue, heart, hippocampus, kidney, liver, lung, skeletal muscle gastrocnemius, subcutaneous white adipose tissue, and plasma in response to 1, 2, 4 or 8 weeks of ExT in 6-month-old male and female Fischer-344 rats. This study demonstrates that these tissues, each with distinct lipidomic features, underwent dynamic, sexually dimorphic lipid remodeling. Exercise trained animals showed reduced whole-body adiposity and improved cardiorespiratory fitness, along with enhanced utilization of lipid stores and dynamic triacylglycerol remodeling compared to sedentary controls in all tissues except hippocampus. They also showed modifications in phospholipids, lysophospholipids, oxylipins, and ceramides in several tissues. Coordinated changes across tissues reflect systemic tissue communication, with liver-plasma-heart connection potentially playing a key role in systemic lipid metabolism during ExT. These data will improve our understanding of lipid-associated biological processes underlying the health-promoting benefits of ExT.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.