Abstract

Transformer networks and self-supervised pre-training have consistently delivered state-of-art results in the field of natural language processing (NLP); however, their merits in the field of spoken language understanding (SLU) still need further investigation. In this paper we introduce a modular End-to-End (E2E) SLU transformer network based architecture which allows the use of self-supervised pre- trained acoustic features, pre-trained model initialization and multi-task training. Several SLU experiments for predicting intent and entity labels/values using the ATIS dataset are performed. These experiments investigate the interaction of pre-trained model initialization and multi-task training with either traditional filterbank or self-supervised pre-trained acoustic features. Results show not only that self-supervised pre-trained acoustic features outperform filterbank features in almost all the experiments, but also that when these features are used in combination with multi-task training, they almost eliminate the necessity of pre-trained model initialization.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.