Abstract
The advent of smart agriculture has revolutionized and streamlined various manual tasks in grape cultivation, one of which is berry thinning. This task necessitates experienced farmers to selectively remove a specific number of berries from the working bunch, as guided by the remaining number of berries in the bunch. In response, this paper introduces a novel real-time edge computing application that automates the process of counting the berries in a working bunch using a single 2D image. The proposed application employs YOLOv5-based object detection techniques (Jocher, 2021) to distinguish each working bunch and the visible and slightly occluded berries contained therein. The key contribution of this paper is to accurately predict the number of berries in the whole bunches including those not visible in a 2D image by harnessing the output from object detection to devise features based solely on bounding box information. In addition, the feature set is optimized by employing a wrapper feature selection method (Kohavi & John, 1997), in consideration of the limitations of edge computing devices. The eight selected features yield a mean absolute error (MAE) of 2.60 berries, tested on a dataset of 26,230 images. Only a slight increase over the initial 19-feature set, which achieved an MAE of 2.42 berries. Furthermore, the proposed approach has been successfully implemented and tested on an Android smartphone, the Sony Xperia 1 III, without the need for an internet connection. The overall computation time per image stands at an average of 0.333 s, confirming its potential for real-world application.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.