Abstract

Content-based music information retrieval tasks have traditionally been solved using engineered features and shallow processing architectures. In recent years, there has been increasing interest in using feature learning and deep architectures instead, thus reducing the required engineering effort and the need for prior knowledge. However, this new approach typically still relies on mid-level representations of music audio, e.g. spectrograms, instead of raw audio signals. In this paper, we investigate whether it is possible to apply feature learning directly to raw audio signals. We train convolutional neural networks using both approaches and compare their performance on an automatic tagging task. Although they do not outperform a spectrogram-based approach, the networks are able to autonomously discover frequency decompositions from raw audio, as well as phase-and translation-invariant feature representations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.