Abstract

We continue our work on endpoints and startpoints inT0-quasimetric spaces. In particular we specialize some of our earlier results to the case of two-valuedT0-quasimetrics, that is, essentially, to partial orders. For instance, we observe that in a complete lattice the startpoints (resp., endpoints) in our sense are exactly the completely join-irreducible (resp., completely meet-irreducible) elements. We also discuss for a partially ordered set the connection between its Dedekind-MacNeille completion and theq-hyperconvex hull of its naturalT0-quasimetric space.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.