Abstract
The acrosome reaction induced by the mouse egg's zona pellucida in mouse sperm has been shown to proceed in two stages as characterized empirically by sequential changes in patterns of chlortetracycline fluorescence on the sperm plasma membrane surfaces. The chlortetracycline fluorescence pattern characteristic of fully intact sperm is designated B; in sperm bound to structurally intact zonae that induce the acrosome reaction, the B pattern changes first to an intermediate pattern S and then to a terminal pattern AR characteristic of the completed acrosome reaction. In the same study, it was shown, using a 9-amino acridine fluorescent pH probe, that completion of the first stage was characterized by increase in H+ permeability such that the H+ gradient between sperm head and medium was dissipated. In this study, we show that the fluorescent pH probe 9-N-dodecylamino acridine and the intracellular Ca2+ fluorescent probe fura-2 are both localized to the anterior part of the sperm head encompassing the acrosomal compartment in intact sperm, and the fluorescence associated with each probe is lost as the first stage of the acrosome reaction is completed. Loss of the pH probe fluorescence, pattern N, corresponds to onset of H+ permeability, and loss of fura-2 fluorescence, pattern F, corresponds to onset of Ca2+ permeability. Localization of intracellular fura-2 fluorescence to the acrosomal compartment required extracellular Mn2+ to quench surface-bound fura-2 AM, the tetra-acetoxymethyl ester of fura-2 used to load the cells. Loss of acrosomal fura-2 fluorescence is due to quenching by tracer Mn2+ accompanying Ca2+. Onset of membrane permeability to both H+ and Ca2+, as seen by loss of patterns N and F, occurred in synchrony in populations of sperm bound to isolated, structurally intact zonae, with an overall time course of 210 min postbinding. The loss of pattern N in individual sperm cells bound to zonae was rapid, with a half time of 2.1 min. Concomitant with this rapid loss of pattern N was a shift in the amplitude of flagellar motion from large to small. The lag times to pattern N loss in 50 individual cells ranged from 30 to 140 min. The variable lag times determine the population kinetics; the rate of the endpoint reaction seen in the individual cells is rapid and constant. Dissipation of the H+ gradient with immediate loss of pattern N was readily achieved by addition of nigericin with no change in the time course of the onset of Ca2+ permeability of the membranes enclosing the acrosome.(ABSTRACT TRUNCATED AT 400 WORDS)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.